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ABSTRACT

National Statistical Institutes typically hire large numbers of
enumerators to carry out periodic surveys regarding the so-
cioeconomic status of a society. Such approach suffers from
two drawbacks:(i) the survey process is expensive, especially
for emerging countries that struggle with their budgets and
(ii) the socioeconomic indicators are computed ex-post i.e.,

after socioeconomic changes have already happened. We
propose the use of human behavioral patterns computed
from calling records to predict future values of socioeco-
nomic indicators. Our objective is to help institutions be
able to forecast socioeconomic changes before they happen
while reducing the number of surveys they need to compute.
For that purpose, we explore a battery of different predic-
tive approaches for time series and show that multivariate
time-series models yield R-square values of up to 0.65 for
certain socioeconomic indicators.
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1. INTRODUCTION
The development of a society is typically measured through

socioeconomic indicators. Variables such as the levels of
employment, the gross domestic product (GDP) or the con-
sumers’ price index (CPI) provide insightful information re-
garding the socio-economic status of households at a na-
tional scale. Accurately computing such information is crit-
ical given that many policy decisions made by governments
and international organizations are based upon such socioe-
conomic variables. For that purpose, National Statistical In-
stitutes (NSIs) typically hire large numbers of enumerators
that carry out periodic interviews to gather information per-
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taining the main socioeconomic indicators of a society. Such
approach has two important disadvantages: (i) the survey
process is expensive, especially for emerging countries that
struggle to balance their budgets and (ii) the socioeconomic
indicators are computed ex-post i.e., after changes in the
socioeconomic indicators have happened. In this paper, we
explore an alternative model for the computation of socioe-
conomic indicators in budget-limited regions that allows to
save on budget by reducing the frequency of the periodic
surveys and that provides information ex-ante i.e., forecasts
socioeconomic indicators before they actually happen. As
such, institutions working for social good will be able to use
affordable forecasts to react before specific events like an
increase in unemployment actually happen.

The ubiquitous presence of social media and cell phones
is generating large datasets of web searches, tweets or call
logs that reveal human behavioral footprints. Data mining
techniques applied to such datasets have been used to ex-
tract usage patterns correlated to specific social, economic
or health indicators. Ginsberg et al. presented Google Flu

Trends and Google Correlate which use Google daily web
search logs statistics related to various socioeconomic indi-
cators to forecast its future values [9, 7]. For example, the
authors showed that the Google web searches related to re-
finance index or mortgage rates accurately predict the time
series of such indicators computed by different banking asso-
ciations through surveys [9]. Similarly, the authors showed
that the time series modeling daily web searches of words
related to influenza can predict the weekly CDC reports on
ILI (influenza-like illnesses) in the US [7]. Moving to Twit-
ter logs, Ruiz et al. showed that Twitter activity is strongly
correlated to time series from the financial domain and can
act as predictors of different economic indicators [10]. In
fact, modeling volumetric and social network features from
Twitter logs, the authors showed that time series-based pre-
dictive models enhanced with Twitter activity improve the
predictability of economic indicators.

As opposed to the use of Twitter logs or Google searches
–that might be associated to a population with certain so-
cioeconomic and literacy levels– cell phone calling logs have
the advantage of representing large percentages of the pop-
ulation given the high penetration rates of cell phones in
emerging regions. Previous research using cell phone call-
ing logs has already shown that cell phone-based behavioral
patterns are correlated to specific socio-economic character-



istics [3, 11]. For example, Eagle et al. showed correlations
between the size of a cell phone social network and the socio-
economic level of a person, and Frias et al. observed strong
relationships between mobility and socio-economic indices
[6]. Additionally, Soto et al. showed that the socioeconomic
level(SEL) of a region at a given moment in time, can be
predicted from cell phone activity during the same time pe-
riod with an 80% of accuracy using training sets containing
both SELs and calling activity [11, 4]. Although this work
threw some light onto the predictability of SELs using call-
ing data, it focused on predicting the present i.e., SEL values
at a specific moment in time rather than forecasting future
values.

To overcome these limitations, we focus our research on
evaluating whether the time series of socioeconomic indica-
tors computed by National Statistical Institutes (NSIs) using
surveys can be forecasted using behavioral information ex-
tracted from calling records. For that purpose, we build time
series modeling the calling behavior of a population over a
period of time and evaluate its predictive power over the
socioeconomic time series computed by the NSIs. By using
calling records which are already collected by telecommuni-
cations companies for billing purposes, we seek to provide
forecasting tools that will allow institutions to save on their
survey expenses and to react before specific social changes
happen. The main contributions of our paper are:

• To analyze the relationship between socioeconomic and
calling records time series. The former obtained from
NSIs through surveys and the latter computed from
calling records over a period of time.

• To evaluate the predictive power of calling data time
series to forecast socioeconomic indicators time series.

Our contributions extend previous work by predicting fu-
ture time series values instead of simply predicting the present.
The rest of the paper is organized as follows. Section 2
explains the related research and Section 3 describes the
datasets used in the paper. Next, in Section 4 we present
the methodological approach and in Section 5 we describe
our results. We finish with conclusions and future work in
Section 6.

2. RELATED WORK
In this section, we describe research findings that use

human-generated datasets like web searches, tweets or call
logs over a period of time to predict social, economic and
health indicators computed through interviews by different
institutions.

2.1 Web Search Logs
Ginsberg et al. developed Google Flu Trends which uses

Google web search logs related to influenza to forecast the
weekly CDC reports on ILI (influenza-like illnesses) in the
US [7]. The authors divided the web searches into nine
US regions and computed, for each region, time series for
the number of weekly queries related to ILI. Using a linear
model on the weekly ILI web searches from 2004 to 2007
the authors obtained a fit for the CDC data with a mean
correlation across regions of r = 0.9. Additionally, to eval-
uate the forecasting power of Google’s web searches, the
authors proposed a regression on the regional web searches

with untested data from 2008 and showed a mean correla-
tion across regions of 0.97 with the CDC time series. Similar
results were reported for the prediction of dengue incidence
in Singapore and Bangkok computed by the ministries of
health from google dengue-related searches [1].

These tools show that health-related web searches can pre-
dict the future number of ILI cases computed by the CDC
with high accuracy. Based on such results, Google devel-
oped Google Correlate which extends Google Flu Trends by
analyzing the predictability of different social and economic
indicators [9] such as refinance index or mortgage rate from
related web searches. The authors compare the predictabil-
ity of different socioeconomic time series using both Auto-
Regression (AR) and Vector Autor-Regression (VAR) mod-
els. AR models predict socieocomic time series exclusively
from previous values and VAR models extend AR models
by including web search information. Their results show
that VAR models including search information increase the
quality of the forecast reaching larger R-square values while
reducing the MAE (mean absolute error).

2.2 Twitter Logs
Ruiz et al. studied the relationship between Twitter ac-

tivity and time series from the financial domain [10]. The
authors used a 6-month dataset of Twitter activity and ex-
tracted both activity and graph features. Activity features
refer to volumetric measures of Twitter activity talking about
companies and the stock market including number of tweets
or number of hashtags; whereas graph features modeled the
properties of the Twitter graph that is formed when users
tweet or re-tweet about stock companies including number
of nodes, edges, number of connected components or degree.
These features, modeled over time, generate time series that
can be compared against stock market data series to under-
stand the relationship between both. The authors explored
how the use of specific Twitter features could enhance the
trading strategy of a trader at the stock market. For that
purpose, they evaluated four trading strategies: (i) Random,
random selection of the stocks; (ii) Fixed, select stock using
a particular financial indicator of the company; (iii) Auto-
Regression (AR): predict the stock with the largest bene-
fits exclusively using previous stock data and (iv) Twitter-
Augmented Regression (VAR): predict the stock with the
largest benefits using both previous stock data and activ-
ity and graph Twitter features. The authors showed that
the Twitter-augmented strategy with the feature number of

nodes is the one that yields the highest benefits thus high-
lighting the importance of using external user-generated in-
formation to enhance financial models.

A similar approach was used by Zhang et al. to show the
existence of correlations between the sentiment in specific
Twitter posts and stock market indicators and to analyze
the predictive power of microblogging logs with respect to
specific economic indicators [12]. Using one year of re-tweets
(RT @) originating from the US and containing both feeling-
and economic-related words – such as hope or dollar– the au-
thors built two time series: the number of re-tweets and the
evolution of economic indicators NASDAQ, DJIA or S&P.
The authors found statistically significant correlations be-
tween tweet statistics and changes in oil price or the DJIA.
Additionally, using correlation and Granger’s causality anal-
ysis the authors posit that Twitter posts might be able to
forecast changes in economic indices one day in advance.



2.3 Cell Phone Records
There exists a large body of work analyzing the relation-

ship between socioeconomic indicators and cell phone call-
ing records [2, 5, 6]. Blumenstock et al. studied the im-
pact that factors like gender or socio-economic status have
on cell phone use in Rwanda [2]. The authors combined
two datasets, one containing call detail records from a telco
company in Rwanda and the other one containing socio-
economic variables computed from personal interviews with
the company’s subscribers. Their main findings revealed
gender-based differences in the use of cell phones and large
statistically significant differences across socio-economic lev-
els with higher levels showing larger social networks and
larger number of calls among other factors. Similarly, Frias
et al. showed that there exist differences between specific so-
cioeconomic factors and how cell phones are used by citizens
in an emerging economy in Latin America [6]. The authors
combined cell phone calling records from an emerging region
with socioeconomic information collected by the National
Statistical Institute of the country through personal inter-
views and questionnaires. The results showed statistically
significant differences between socioeconomic levels and the
number of calls people make; between the education level
and the reciprocity of the calls or between gender and the
average distances travelled by citizens, among others.

Moving beyond statistical relationships, Soto et al. ex-
tended the previous research by proposing the use of Sup-
port Vector Machines (SVMs) and Random Forests to pre-
dict the socioeconomic level of a region based on cell phone
usage patterns computed from call logs [11]. The authors
use both call logs and socioeconomic indicators from 2010
and divide them into training and testing sets, reporting
forecast accuracy rates of over 80%. However, it is impor-
tant to highlight that this approach can only predict the
present i.e., predict the socioeconomic level of a region at
a moment in time, based on the socioeconomic levels and
call logs from other regions at that same moment in time.
Based on the successful predictive approaches showed using
Google and Twitter time series, our paper extends Soto’s
approach by moving from predicting values in the present

to the prediction of future values in socioeconomic time se-
ries using calling logs. We posit that as opposed to Google
or Twitter, the penetration rates of cell phones in emerging
economies is larger across socioeconomic levels, and thus be-
havioral models built from these might be able to represent
larger segments of the population.

3. DATASETS
In this section, we describe the two datasets involved in

the analysis of the predictive power that call logs have with
respect to socioeconomic indicators time series.

3.1 Socioeconomic Indicators
We gather socioeconomic time series from the local Na-

tional Statistical Institute (NSI) of an emerging economy in
Latin America. The local NSI periodically carries out sur-
veys at each state of the country so as to obtain monthly
values for a wide range of socioeconomic indicators. For
analytical purposes, we focus our research on six socioeco-
nomic indicator time series that are computed, monthly, at
a state level including (i) Total assets, measuring both tan-
gible and financial assets of the state (ii) Total number of
employed citizens (iii) Total number of workers employed

by private industries and organizations, (iv) Total number
of civil servant employed by public institutions, (v) Total
number of subcontracted workers and (vi) Total number of
subcontracted civil servants. We retrieve the previous time
series for one of the largest states in the emerging region un-
der study and for a time period of 17 months, which is the
range for which we also have cell phone calling logs available.

3.2 Cell Phone Records
Cell phone networks are built using a set of base transceiver

stations (BTS) that are responsible for communicating cell
phone devices within the network. Each BTS or cellular
tower is identified by the latitude and longitude of its geo-
graphical location. The area of coverage of a BTS can be
approximated with Voronoi diagrams. Call Detail Records
(CDRs) are generated whenever a cell phone connected to
the network makes or receives a phone call or uses a ser-
vice (e.g., SMS, MMS). In the process, the BTS details are
logged, which gives an indication of the geographical posi-
tion of the user at the time of the call. It is important to
clarify that the maximum geolocation granularity that we
can achieve is that of the area of coverage of a BTS i.e., we
do not know the whereabouts of a subscriber within the cov-
erage area. From all the information contained in a CDR,
our study only considers the encrypted originating number,
the encrypted destination number, the time and date of the
call, the duration of the call, and the BTS that the cell phone
was connected to when the call was placed.

Our CDR dataset contains 17 months (from February
2009 to June 2010) of daily cell phone calls from pre-paid
and contract subscribers in a Latin American country. From
these call detail records, we compute two groups of variables
so as to model cell phone usage: consumption and mobility
variables. The consumption variables characterize the gen-
eral cell phone use statistics for a specific region and period
of time. Specifically, we measure the number of input or
output calls and its duration. The mobility variables char-
acterize spatio-temporal mobility patterns with the gran-
ularity of the area of coverage of a BTS. Specifically, we
measure the average number of BTSs used; the average talk

distance or distance traveled by customers while talking on
the phone; the average route distance or distance traveled
by customers between phone calls; the average total distance
traveled by customers during a period of time; the radius of

gyration or distance between the used BTSs weighted by the
number of calls made from each tower and the diameter or
distance between all used BTSs. The radius of gyration can
be considered a measure of the area where a person typically
works and lives, whereas the diameter approximately repre-
sents the geographical area where a person spends most of
her time (work and leisure).

Given that the selected socioeconomic time series from the
NSI are computed at a state level with monthly frequency,
both consumption and mobility variables for the population
under study are obtained with the same geographical and
temporal granularity i.e., each variable represents an aver-
age monthly value for the customers that live within the
same state. Further details related to the computation of
the time series are explained in Section 5.

4. FORECASTING INDICATORS
Our aim is to understand whether calling variables can be

used to predict future socioeconomic indicators and as such



help institutions in emerging regions save on their budgets
as well as providing ex-ante information to react before so-
cioeconomic changes actually happen. For that purpose, we
analyze whether the consumption and mobility time series
extracted from call logs can help to forecast the socioeco-
nomic time series computed by the NSI. In this section we
explain the methodology for our experimental analysis.

4.1 Building the Time Series
First, we need to compute a time series for each calling

variable presented in the Datasets section. Using the 17
months of calling records, we compute the monthly time se-
ries for each consumption and mobility variable in the state
S under study. For each calling variable x its time series
xS = {x0, x1, ...xt} is a chronological sequence of monthly
measures where each xi represents the monthly average of
the calling variable X for state S during month i, where
i = 1...17. Additionally, given that the type of contract a
subscriber has with the telecommunications company might
impact the behavior of the user, we compute two different
time series per variable, one for the subscribers that have
the pre-paid option xS,prepaid and one for the subscribers
that have a contract with the company xS,contract.

On the other hand, the NSI time series nS = {n0, n1, ...nt}
– computed by the NSI through surveys – are chronological
sequences of monthly measures where each ni represents the
monthly average of a socioeconomic indicator for state S
during month i, where i = 1...17.

4.2 Stationary Time Series
With both the socioeconomic and calling variables time

series in hand, we start the time series analysis. Typically,
time series analysis consists of two steps: (i) build a model
xS,t = f(x(S,t−1), .., x(S,t−q)) that accurately represents the
time series using past values and (ii) use the model to predict
future values. Before running any type of analysis, it is
critical to guarantee that the time series is stationary. A
time series is stationary if its joint probability distribution
does not change when it is shifted in time or space. As a
result, the mean and covariance do not vary over time. If
its autocovariance depends only on the lag, the time series
is said to be weakly stationary.

Often times, socioeconomic time series are not (weakly)
stationary processes. In order to test whether our socioe-
conomic and calling variables time series are stationary, we
run two statistical tests: the kpss test, also known as the
Kwiatkowski, Phillips, Schmidt and Shin test and the ADF
or Augmented Dickey-Fuller test. Both tests look for trend
stationarity in the time series by testing the null hypothesis
of a unit root in a univariate time series. Additionally, we
support our analysis by plotting the autocorrelation (ACF)
and partial autocorrelation functions (PACF) of the time se-
ries, where a decay after a few peaks at the first lags should
be observed to guarantee stationarity.

If a distribution does not pass the stationarity tests, we
use two techniques to attempt to reach it: differencing and
logging. Differencing consists on building a new distribution
z such that each of its values is computed as the nth-order
difference between an element and its n past elements i.e.,

z = {x1−x0, x2−x1, ..., xp−xp−1} for first-order difference
(n = 1) or z = {xt−1−xt−2−...−x0, ..., xp−xp−1−...−xp−t}
for t− th order difference (n = t). Whenever necessary, and
in order to improve stationarity, the differenced values are

represented as a percentage of change (incremental or decre-
mental) with respect to the previous value dividing each dif-

ference by its last original value i.e., xi =
xi−xi−1

xi−1

being xi

and xi−1 consecutive elements of time series z. On the other
hand, logging consists on computing the logarithm on each
value of the distribution. In fact, log-transforming the data
sometimes helps to stabilize the variance.

4.3 Leaders and Trailers
Once we have the socioeconomic and calling time series

in a stationary state, we can compute their cross-correlation
coefficients (CCF). The CCF reveals the correlations that
might exist between two time series, and the temporal lags
at which such correlations happen. As such, it is a necessary
first analytical step and a good indicator of the potential
predictive power that a leader time series might have over a
trailer time series. The CCF(x,y) is defined as:

CCF (x, y) =
E[(Xt − µx)(Yt+τ − µy)]

ρx ∗ ρy
(1)

which represents the normalized cross-covariance of time
series x and y and gives an understanding of the correlations
between the two at positive and negative temporal lags (...,-
2,-1,0,+1,+2,...) [10]. Strong correlations at negative lags
imply that the time series y might be able to forecast time
series x and vice versa, thus discerning between the leader
and the trailer time series. Whenever no correlations are
found, and in an attempt to get a better understanding of
the relationship between the two series, we carry out an
additional pre-whitening of the time series involved in the
CCF computation. The main purpose is to clean the sig-
nal provided by the time series and detect correlations that
might be hidden behind noise. The pre-whitening technique
finds a fitting for time series x and determines its residuals,
after which, these are substracted from time series y and
the CCF is examined between the residuals for x and the
pre-whitened y time series [8].

4.4 Predicting Time Series
The CCF allows to identify which calling time series are

trailers of specific NSI time series. In this section, we present
two techniques to build predictive models that can forecast
future socioeconomic indicators using calling logs.

4.4.1 Multivariate Regression Models

Our first approach is a multivariate regression model where
the NSI time series values are predicted exclusively using
calling variables time series. Specifically, an NSI time series
y is modeled as y = β1x1 + β2x2 + ... + βpxp + ǫi where xj

represents a calling variable time series. It is important to
highlight that this multivariate model ignores the temporal
order of the samples in the time series, and attempts to find a
fitting solely based on tuples of values (yt, {x(1,t), ..., x(p,t)})
available at different times t. Next section explores a pre-
dictive model where the temporal order also plays a role.

4.4.2 Time Series Models

Time series analysis attempts to forecast future values of
a series from its previous ones e.g., the Dow Jones Indus-
trial Average (DJIA) at time t can be predicted from its
i previous values in the past as DJIAt = α1DJIA(t−1) +
...+αiDJIA(t−i). Traditional time series analysis proposes
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Figure 1: NSI series Total Subcontracted Civil Ser-
vants before (17 points) and after being stationarized
with 1st-order differencing (16 points).

three approaches to fit and forecast a series: Auto-regressive
model (AR), Moving average (MA) and Auto-regressive Mov-
ing average (ARMA). The AR(p) models a univariate time
series where the value at time t is predicted from its p pre-
vious temporal consecutive values. The MA(q) models a
time series where the forecasted value at time t depends
on q previous unobserved white-noise values. Finally, the
ARMA(p,q) is a combination of both AR and MA models,
where the forecasted values are computed from p previous
values of the time series and q previous value of a white noise
distribution.

These models are univariate i.e., solely based on pre-
vious values of the time series under study. However, it
might be the case that other variables can potentially pro-
vide additional information to enhance the model that ex-
plains the evolution of a specific series. For instance, to
predict the price of a stock we can use its previous val-
ues, but it might help to understand how the S&P time
series evolves over time too. For that reason, the AR, MA
and VARMA models have their corresponding multivariate

variations namely VAR, VMA and VARMA. Taking as a
baseline a simple AR(p) model xt = c +

∑p

i=1 φixt−i + ǫt
where xt is the value of time series x at time t, we can
compute its enhanced multivariate version VAR(p) as yt =
c+ τ1yt−1 + ...+ τpyt−p + ǫt where y represents a vector of
n time series yi and τi are (nxn) coefficient matrices con-
taining the model parameters for each individual time se-
ries. As such, the VAR(p) allows us to express each time
series yi as dependent not only on its own past values but
also on the values that other variables have in the past.
For example, a VAR(2) with i = 1 would be modeled as
y1,t = c1 + τ 1

11y1,t−1 + τ 1
12y2,t−1 + τ 2

11y1,t−2 + τ 2
12y2,t−2 + ǫ1t

for time series y1, whose values are forecasted based on its
own past values at lags minus one and minus two lags as

well as on the values of time series y2 for the same temporal
lags.

4.4.3 Forecast Evaluation

To evaluate these models, we divide the 17−month dataset
into an 13−month training set and a 4−month testing set
and report their R-square values, which measure the qual-
ity of the fit and the quality of the predictions that can be
achieved using such model respectively. Additionally, we
evaluate the predictive power for different horizons or steps
ahead in time. A one-step ahead forecast (h = 1) simply
predicts the next value of the series at time t + 1 using the
previous real value at time t (extracted from the series com-
puted by the NSI though surveys). On the other hand, an
n-step ahead forecast (h = n) predicts the future value at
time t+n solely based on the t+n− 1 previous predictions
and on the real value at time t.

From a policy perspective, a horizon of one would allow
institutions to react upon specific events, however would not
allow to save on budget given that the real value of the NSI
series is always necessary to predict future values. On the
other hand, a horizon of n means that institutions can not
only react to changes in socioeconomic indicators before they
happen, but also save on the budget allocated to compute
these indicators since real survey values would only be nec-
essary every n periods of time. This would imply saving the
budget allocated to compute n− 1 surveys.

In the case of multivariate regressions, we explore all pos-
sible combinations of different calling variable time series
and evaluate their predictive power. Given that multivari-
ate regressions do not incorporate temporal information in
the models, we simulate the h = 1 horizon by re-training
the model after each prediction with the real NSI value and
calling variables for that specific sample; whereas horizon
h = n is simulated re-training the model with the predicted
NSI values and their calling variables for the last n−1 sam-
ples and the real NSI value for the first sample. As for the
multivariate time-series models, we use the univariate mod-
els for the NSI variables as a baseline and evaluate whether
its multivariate counterparts –enhanced with consumption
or mobility time series– improve the quality of the models
and their predictive power. Unlike the multivariate regres-
sions, there is no need to re-train given that the model itself
already incorporates temporal information.

5. EXPERIMENTAL RESULTS
In this section, we describe the results obtained after run-

ning all the analyses described in the previous section. We
used the econometrics toolbox in Matlab for all the tests and
fittings.

5.1 Stationary Time Series
As mentioned earlier, in order to carry out time series

analysis we first need to make sure that these are stationary.
For each CDR and NSI series, we carry out the stationarity
tests and whenever necessary we use differentiation or log-
ging of the time series values. As an example, Figures 1(a)
and 1(b) show the time series for the NSI variable Total

subcontracted civil servants before and after making it sta-
tionary. Originally, we observe that the time series is non-
stationary with an incremental pattern and varying mean
and variances over the 17 points. This hypothesis is also
confirmed by the the fact that none of the statistical tests



CDR / NSI Assets Employment Workers C. Servants Sub. Workers Sub. C.Servants
Input Calls (6,0.5030) (5,0.4850) (5 , 0.5136)
Output Calls (-1,-0.6579) (-3 , -0.4811) (2, -0.5553) (-1,-0.4321)

Duration InCalls (6,0.5213) (5,0.5062) (5, 0.5109)
Duration OutCalls (-1,-0.6279) ( -3 , -0.4545) (-2,-0.5752)

N. BTS (-3,0.687) (1,-0.675)
Talk Distance (-3,0.676)
Route Distance (-1,0.685) (-1,-0.654)
Total Distance (-1,0.891) (1,-0.819) (-2,0.708)

Radius Gyration (8,-0.643) (9,0.621) (-5,-0.731) (-2,0.642) (9,0.770)
Diameter (8,-0.651) (9,0.698) (-5,-0.739) (-2,0.659) (9,0.760) (-1,0.642)

Table 1: CCF between NSI and CDR variable time series for subscribers in the state under study. Statistically
significant correlations (p < 0.01) and lags at which these happen.

for stationarity reject the null hypothesis for the unit root.
For that reason, we applied a differencing approach where
each value in the time series is defined as the difference be-
tween itself and the next value. Figure 1(b) shows the end
results. We observe that the time series has become more
stationary, which is confirmed by the statistical tests. All of
the calling and NSI time series required either a 1st-order
differenciation or a percent change so as to convert them to
stationary time series. Thus, the final size of each series is
16 points (12 for training and 4 for testing).

5.2 Cross-Correlations
In this section, we analyze the cross-correlation coeffi-

cients (CCF) between the CDR and the NSI variables. We
seek relationships that happen at negative correlations which
represent CDR variables that might be able to predict changes
in the NSI variables before these actually happen. Table 1
shows the cross-correlation coefficients (CCF) between the
CDR and the NSI variables at different lags in time. For
each pair of variables, we report the lag at which the corre-
lation is statistically significant (p < 0.01) and its correla-
tion index. Results are only reported for contract customers
because most of the CCF trends are very similar to the pre-
paid ones. However, it is important to clarify that in general
the correlation values for pre-paid customers are smaller.

The consumption variables show that the number of ouput
calls and their duration are correlated to the total employed,
total number of workers, subcontracted workers and sub-
contracted civil servants at negative lags. Specifically, we
observe negative CCFs meaning that the larger the number
of workers for that state, the smaller the number of output
calls and durations customers seem to show. This might be
related to cell phones being used as job-seeking tools i.e.,

cell phones show large number of output calls whenever the
employment rates are low. On the other hand, input mea-
sures show correlations at positive lags which reveal that
NSI variables (leaders) might be predictive of CDR variables
(trailers).

In terms of mobility variables, traveled distances (talk,
route and total) show positive correlations at negative lags
for employment rates, meaning that whenever there is a in-
crease in the distance travelled, such change might be pre-
dictive of an increase in the employment rates. Alterna-
tively, number of BTSs, radius of gyration and diameter
show correlations at negative lags for the total number of
workers and subcontracted civil servants. These three vari-
ables show an interesting trend: larger values might be pre-

dictive of decreases in the total number of workers (negative
CCF) and increases in the number of civil servants (positive
CCF). Given that both measures give an approximation of
the area where a person spends most of her time, we could
interpret that workers that have a job tend to move in larger
areas than when they are unemployed whereas civil servants
decrease their area of mobility when they are employed.

To sum up, both consumption and mobility time series
show potential predictive power over several NSI series in-
cluding employment, total workers, total civil servants, sub-
contracted workers and subcontracted civil servants. These
results show that behavioral variables computed from call-
ing records can potentially be used as predictors of NSI vari-
ables computed through traditional surveys. Next, we eval-
uate various mathematical models to measure the predictive
power of the calling variables time series.

5.3 Forecasting

5.3.1 Multivariate Regressions

In this section, we explore the predictive power of the call-
ing time series over the NSI indicators using multivariate
regression analysis, which only uses consumption and mo-
bility series stripped of their temporal information to build
the predictive models.

Tables 2 and 3 show the R-square values for the multivari-
ate regressions on each NSI variable. The R-square training
and testing values represent the percentage of the set that is
explained with the fitted model and the quality of the pre-
dictions respectively. We only discuss results for one-step
ahead predictions (h=1) since larger horizons did not yield
significant results. Whenever the testing R-square is not re-
ported, it is because it was a negative value implying that
the fitted model is as bad as a horizontal line and has null
predictive power. Additionally, we report results for regres-
sions using sets of up to four different consumption variables
(Table 2) and four different mobility variables (Table 3). In
the cases when not all variables are used (subsets of two
or three variables), we report the best fits. Finally, the ta-
bles are based on calling variables computed for customers
with a contract. Results for pre-paid users were very similar,
although these showed slightly smaller values. As such, it
appears that contract customers share stronger behavioral
patterns that approximate better the NSI variables.

Table 2 shows that the R-square training values for mod-
els built using one or more consumption time series are quite
low, meaning that is is relatively hard to build a model that



R-square CDR Series Assets Employment Workers C. Servants Sub. Workers Sub C.Servants

Train
2 0.20 0.18 0.05 0.18 0.18 0.12
3 0.26 0.21 0.06 0.19 0.21 0.12
4 0.27 0.22 0.08 0.21 0.21 0.12

Test(h=1)
2 - ≈ 0 - ≈ 0 ≈ 0 -
3 - - - - ≈ 0 -
4 - - - - - -

Table 2: Training and Testing R-squares for Multivariate Regression Models with one or more Consumption
Variables Time Series for customers with a contract in the state under study.

R-square CDR Series Assets Employment Workers C. Servants Sub. Workers Sub C.Servants

Train
2 0.30 0.28 0.31 0.40 0.20 0.25
3 0.59 0.38 0.40 0.52 0.33 0.30
4 0.68 0.46 0.45 0.67 0.54 0.36

Test(h=1)
2 - - - - ≈ 0 ≈ 0
3 - - - - ≈ 0 ≈ 0
4 - - - - - -

Table 3: Training and Testing R-squares for Multivariate Regression Models with one or more Mobility
Variables Time Series for customers with a contract in the state under study.

accurately describes the NSI time series. Although adding
more than one time series seems to improve the R-square
values during the training, these are still low. The high-
est values were reached for the total assets and total em-
ployed using four different calling time series with peak val-
ues around 0.27 or smaller. As a result, the predictive power
of the multivariate regression model is almost non-existent.
In fact, the R-square values at horizon one were all either
negative or very close to zero which reveals that consumption
calling behaviors are bad to forecast values at any horizon.

On the other hand, we observe that the mobility variables
show higher training R-square values than the consumption
variables. Specifically, total assets, total civil servants and
total subcontracted workers reach the highest peaks with
values of up to 0.68. Total workers and total number of
subcontracted civil servants are the variables that are worst
explained by the fitted models with R-square values of 0.46
and 0.36, respectively. As expected, reducing the number of
regressors, also reduces the quality of the model across all
NSI variables. Whenever less than four variables were con-
sidered, the combinations that yielded best results always
included diameter and radius of gyration which appear to
be the strongest variables to compute the best models. Al-
though the training models appear to find decent fits for the
NSI data, the testing results were also very poor with ei-
ther negative or close to zero R-square testing values at any
horizon.

To illustrate our findings, Figure 2 shows the NSI time se-
ries for the total civil servants and total subcontracted civil
servants together with their forecast computed with a mul-
tivariate regression. Although the regressions do not take
into account the time label, we selected to represent the
pairs of value and fitted value along the time axis so as to
be able to easily analyze the quality of the regressors’ pre-
dictive power. Also, the values for the y axis represent the
percent change (a) or differenced (b) time series, and not
its original values which were re-computed to guarantee sta-
tionarity. Figure 2(a) shows the differenced total number of
subcontracted workers computed by the NSI (solid line), the
fitted values (dashed line) computed using a four-CDR vari-
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Figure 2: Multivariate Regressions for (Percent
Change) Total Civil Servants and (Differenced) Sub-
contracted Civil Servants using (a) consumption and
(b) mobility series with h = 1. Predicted values from
Feb-Mar onwards, after vertical line.



Assets Employment Workers C. Servants Sub. Workers Sub C.Servants
R-square Train 0.19 0.45 0.75 0.68 0.32 0.40

R-square Test (h=1) - - - - 0.52 -
R-square Test (h=2) - 0.23 - - 0.07 0.30

Table 4: ARMA fittings for NSI variables. The table shows the training and testing R-square values for
horizons one-step and two-steps ahead.

able multivariate regression model with the training data
(until Feb-Mar) and the predicted values (dashed line) us-
ing the model over the testing data (after vertical line). We
observe that the fitting of the model is quite bad as it does
not capture either the real volumes or the trends of the orig-
inal data. Therefore, the model fails to predict real values
and even incremental or decremental trends, modelling ex-
actly the opposite trends. Similarly, Figure 2(b) shows the
differenced total number of subcontracted employees com-
puted by the NSI and its fitted and predicted values based
on a combination of four mobility variables including talk
distance and radius of gyration. In this case, although the
training appears to be much better, the testing also fail to
identify either real volumes or trends.

In general, both tables and figures show that multivariate
regression models built with behavioral variables computed
from calling records fail at forecasting socioeconomic indi-
cators. These results might be related to the fact that our
proposed regression models do not take into account the
temporal information of the time series during the train-
ing of the model. We hypothesize that such models fail to
identify specific temporal associations between calling be-
havioral patterns and socioeconomic indicators. Addition-
ally, our regression models do not take into account previous
information from the NSI indicators, which might also help
to enhance the models. In an attempt to overcome these
issues, next section explores the use of multivariate time-
series models that take advantage of the temporal labels as
well as of the information contained in the NSI time series.

5.3.2 Time Series Analysis

In this section, we evaluate the use of multivariate time-
series analysis to forecast NSI socioeconomic series. For that
purpose, we first analyze the predictive power of different
AR, MA and ARMA models which only use past values of
their own NSI time series to predict future ones. Taking
these models as a baseline, we will compare them against
their multivariate counterparts which we build using both
NSI and calling variables time series.

In general, we found that the best univariate time-series
model for the NSI indicators was an ARMA model, except
for the case of the total number of civil servants where an
AR model showed the best fitting. Both ARMA and AR
models have p values of up to 3 and the q value was always
one, which reveals that, in general, future NSI values can
be forecasted looking at values from one to three months
before. Table 4 shows the training and testing R-square val-
ues for the best univariate time-series models at horizons of
one-step and two-steps ahead since larger values did not give
significant results. We can see that total employment, total
number of workers and total number of civil servants had the
best training R-square values with 0.45, 0.75 and 0.68. In
terms of predictive power, univariate time-series models do
a good job for certain NSI time series, and certainly improve

the results obtained with the multivariate regression mod-
els. At horizon one, the model for the subcontracted workers
time series shows an R-square value of 0.5 whereas it looses
almost all predictive power at horizon two. As such, the NSI
series itself, could be used by institutions to forecast socioe-
conomic changes in the number of subcontracted workers
one month in advance. On the other hand, the series total
employed and number of subcontracted civil servants have
significant predictive values at horizon two with R-squares
of 0.23 and 0.30, respectively. Although these values are a
little bit low, they could certainly be used to predict trends
rather than real values. In any case, we use these results as
a baseline to evaluate whether time series computed from
calling records might improve the quality of the univariate
time-series models.

Tables 5 and 6 show the training and testing R-square
values for the multivariate time-series models built with one
or more consumption and mobility time series respectively.
Due to the reduced number of training points in our dataset,
the models are limited to combinations of up to three differ-
ent calling variables. We force the model to have at least one
non-zero coefficient for the consumption or mobility vari-
ables so as to compare it against its univariate baseline.
Testing R-square values are only reported at horizons one
and two since larger values did not reveal significant results
except for a few exceptions that are presented later on. For
clarity purposes, we only present results for contract cus-
tomers and do not specify the model details for each com-
bination, but in general, the most common model was a
V AR(1), V AR(2) and V AR(3).

Table 5 shows that the best training R-square values are
achieved when NSI models use only one consumption vari-
able time series. In terms of variables, total employed, total
civil servants and total subcontracted workers show the high-
est R-square training values of 0.82, 0.72 and 0.74, respec-
tively. Regarding predictive power, we observe that number
of employees, total subcontracted workers and total sub-
contracted civil servants show very good R-square testing
values for one-step ahead predictions with values 0.65, 0.66
and 0.51 respectively across different subsets of calling se-
ries, which always included the number of output calls. Fig-
ure 3(a) shows the original (solid line), the trained model
(dashed line until Feb-Mar) and the predicted values (after
vertical dashed line, from Feb-Mar onwards) at h = 1 for the
differenced total employed time series using three CDR vari-
ables. We observe that both trends and volumes are modeled
quite well meaning that institutions could use these models
to predict changes in the total number of employees with
one month in advance.

On the other hand, two-step ahead predictions show smaller
although still significant values for the same NSI series: total
employed, total subcontracted workers and subcontracted
civil servants with values of 0.31, 0.37 and 0.35, respectively.
These models only used a unique calling time series which



R-square CDR Series Assets Employment Workers C. Servants Sub. Workers Sub C.Servants

Train
1 0.6421 0.8262 0.5522 0.7222 0.7448 0.6276
2 0.6140 0.8173 0.5471 0.7220 0.7438 0.6155
3 0.6055 0.8169 0.4889 0.6806 0.7019 0.4781

Test(h=1)
1 - 0.65 - - 0.53 0.51
2 - 0.16 - - 0.40 0.43
3 - 0.10 - - 0.66 0.38

Test(h=2)
1 - 0.31 - - 0.37 0.35
2 - - - - - -
3 - - - - -

Table 5: VARMA models computed with an NSI variable and one or more consumption variables for contract
subscribers in the state under study. We evaluate one-step (h=1) and two-step (h=2) ahead predictions.

R-square CDR Series Assets Employment Workers C. Servants Sub. Workers Sub C.Servants

Train
1 0.68 0.82 0.88 0.96 0.81 0.80
2 0.68 0.82 0.87 0.96 0.79 0.79
3 0.66 0.80 0.86 0.92 0.79 0.78

Test(h=1)
1 - - - - 0.33 0.38
2 - - - - 0.37 0.36
3 - - - - -

Test(h=2)
1 - 0.18 - - 0.07 0.04
2 - - - 0.13 0.08 -
3

Table 6: VARMA models computed with an NSI variable and one or more mobility variables for contract
subscribers in the state under study. We evaluate one-step (h=1) and two-step (h=2) ahead predictions.

was either the number of output calls or its duration. Fig-
ure 3(b) shows the original, the trained model and the pre-
dicted values at h = 2 for the differenced total subcontracted
workers. As shown, our two-steps ahead predictions could
be used as a way to forecast trends (increase or decrease in
a value) rather than absolute volumes which are sometimes
under-estimated. Hence, institutions in emerging regions
could use our models to forecast trends two months ahead
which would allow them to carry out surveys only once every
two months, thus saving budget. The latest collected survey
data would then be used to update the multivariate time-
series model so as to maintain the quality of its predictions.
We acknowledge the limitations of our model at horizon two
if real value predictions are desired, however we believe that
being able to predict trends also has a lot of potential from
a policy perspective. Finally, it is important to highlight
that multivariate time-series models show higher predictive
power than the univariate models at horizons one and two.
We hypothesize that this is probably due to the fact that
calling records provide complementary behavioral informa-
tion to the NSI series that enhances the forecast power of
the models.

Similarly, Table 6 shows that the best training and test-
ing R-square values for the multivariate time-series models
using mobility data. We observe that total employed, total
workers and total civil servants show the highest training R-
square values of 0.82, 0.88 and 0.96, respectively. In terms of
predictive power, the total number of subcontracted workers
and subcontracted civil servants have good R-square test-
ing values for one-step ahead predictions – 0.38 and 0.37
respectively– meaning that institutions in emerging regions
could predict changes in the number of subcontracted per-
sonnel before these happen and act accordingly. As an exam-

ple, Figure 3(c) shows the original, the trained model and
the predicted values (after vertical dashed line) at h = 1
for the differenced total subcontracted civil servants series
based on two mobility series including radius of gyration
(percent change). We observe that our model predicts quite
well the general trend, although the real values are a bit
under-estimated.

Two-step ahead predictions show smaller testing R-square
values but still significant for total employed and total civil
servants (0.18 and 0.13, respectively). Figure 3(d) shows
the original, the fitted model and its predicted values (h=2)
for the percent change total civil servants time series. Inter-
estingly, mobility variables show less predictive power over
certain NSI series than their univariate counterpart (recall
that we force at least one mobility variable to have a non-
zero coefficient). For example, R-square values for number
of subcontracted workers (at h = 1) decreases from 0.52 to
0.37. Thus, it is fair to say that for some NSI variables,
mobility variables do not appear to provide behavioral in-
formation that better complements the univariate models.

To sum up, multivariate time-series models can improve,
in some cases, the predictive power of the traditional uni-
variate series models by simply adding one or more calling
variable time series to the model. In general, our results
show good R-square values for one-step ahead predictions
and acceptable values for two-step ahead predictions for cer-
tain NSI time series. Although some of the multivariate
time-series models discussed might not be able to predict
approximate real values, they can certainly forecast changes
in the trends of the NSI series. Specifically, we achieve sig-
nificant results for the number of employed people, the total
number of subcontracted workers and the total number of
subcontracted civil servants. Our models failed to provide



Feb−Mar Aug−Sep Jan−Feb May−Jun
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

T
o

ta
l 
E

m
p

lo
y
e

d

Multivariate Time−Series Model (h=1)

 

 

NSI

VAR(1)

(a)

Feb−Mar Aug−Sep Jan−Feb May−Jun
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

T
o

ta
l 
s
u

b
c
o

n
tr

a
c
te

d
 w

o
rk

e
rs

Multivariate Time−Series Model (h=2)

 

 

NSI

VAR(2)

(b)

Feb−Mar Aug−Sep Jan−Feb May−Jun
−5000

−2500

0

2500

5000

T
o

ta
l 
S

u
b

c
o

n
tr

a
c
te

d
 C

iv
il 

S
e

rv
a

n
ts

 

 

Multivariate Time−Series Model (h=1)

NSI

VAR(1)

(c)

Feb−Mar Aug−Sep Jan−Feb May−Jun
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

T
o

ta
l 
C

iv
il 

S
e

rv
a

n
ts

 

 

Multivariate Time−Series Model (h=2)

NSI

VAR(2)

(d)

Figure 3: Multivariate Time-Series Models: (a) Total Employed (Diff., h=1) and (b) Total subcontracted
Workers (Diff., h=2) with consumption series; (c) Total subcontracted civil servants (Diff., h=1) and (d)
Total Civil Servants (% Change, h=2) with mobility series. Forecasts from Feb-Mar onwards (vertical line).

good predictive models for the other NSI series, which might
be due to the limited size of our training and testing datasets
(16 points in total). We will focus our future work on daily
time series that introduce larger volumes of data to fit the
models. We believe that these are preliminary results that
might encourage local Statistical Institutes to consider call-
ing logs provided by telecommunications companies as an
affordable approach to forecast future values or trends for
the socioeconomic indicators of their interest.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have analyzed whether behavioral vari-

ables extracted from calling records can be used to predict
socioeconomic time series. Our objective is to provide in-
stitutions in emerging economies with a forecasting tool to
reduce the number of surveys they have to run to gather such
indicators. Additionally, we expect that such tool will also
offer the capabilities to react to socioeconomic changes be-
fore they actually happen. For that purpose, we have evalu-
ated different multivariate regression and multivariate time-
series forecasting models using consumption and mobility
time series extracted from calling records from an emerging
economy in Latin America spanning a period of 17 months.
Our results show that using multivariate time-series com-
puted with different sets of consumption and mobility vari-
ables time series yield good predictive results, whereas mul-
tivariate regressions fail to provide good forecasts. Specifi-
cally, our models provide good R-square values for certain
NSI variables at horizon one. As for horizon two, R-square
values are lower, however, the models are useful to forecast
trends instead of real values. In the future, we plan to ana-
lyze non-linear approaches such as NN or SVMs applied to
time series.
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